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SOME ELEMENTARY RESULTS IN INTUITIONISTIC MODEL THEORY

WIM VELDMAN AND FRANK WAALDIJK

Abstract. We cstablish constructive refinements of several well-known theorems in elementary model
theory. The additive group of the real numbers may be embedded elementarily into the additive group of
pairs of real numbers, constructively as well as classically,

Introduction. Intuitionistic model theory, as we understand it, is part of intu-
itionistic mathematics. We study intuitionistic structures from the model-theoretic
point of view 1n an intuitionistic way. We are not trying to find non-intuitionistic
mterpretations of formally intuitionistic theories.

The paper 1s divided into eight sections. In Section 1 we notice that notions such
as “elementary equivalence” and “elementary substructure” have a straightforward
constructive meaning. We classify formulas according to their quantifier-depth
and define corresponding refinements of the basic model-theoretic concepts. We
mtroduce strongly homogeneous structures, that is, structures with the property that
every local isomorphism extends to an automorphism of the structure. We also
introduce the weaker notion of a back-and-forth-homogeneous structure, We prove
a theorem that will help us to find elementary substructures of back-and-forth-
homogeneous structures.

In Section 2 we recapitulate the intuitionistic construction of the continuum and
prove that the structure (R, <) is strongly homogeneous.

In Section 3, we consider subsets 4 of R such that (4, <) is an elementary
substructure of (R, <). We recover and extend the most important results of [7]. In
Section 4, we prove that intuitionistic Baire space (', #,) (the universal spread),
considered as a set with an apartness relation, not with an order relation, is strongly
homogeneous, and we mention some applications of this result. Section 5 is our
first intuitionistic intermezzo. We discuss some consequences of the continuity
principle, and show that the apartness structure (R, #) is not strongly homogeneous.
In Section 6 we prove that (R,#) is back-and-forth-homogeneous. In Section
7, our second intuitionistic intermezzo, we show that Fraissé’s characterization of
elementary equivalence i1s not valid constructively. In Section 8 we study (R, +),
the additive group of the real numbers, and consider several structures that are
elementarily equivalent to (R, +).

Most of our proofs, although intuitionistically correct, may count as “classical”
proofs of the corresponding “classical” theorems. Nobody will find fault with our
avoldance of indirect arguments. In the proof of Theorem 3.3.4 we use a version
of the axiom of countable choice. This version of the axiom of countable choice is
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accepted in intuitionistic mathematics, and, as one may see for instz_:mce at page 15
of [5], itis also accepted in the wider circle of constructive mathematics. Specifically
intuitionistic axioms are used in Sections 5, 7 and 8.3, but nowhere else.

To a large extent our constructive treatment of model-theoretic questions was

inspired by the work of R. Fraissé who, although reasoning classically, sought for

direct arguments in model theory.
“Iff” means “if and only 1f™.
We hereby express our thanks to the referee, whose comments led to some 1m-

provements of the paper, especially m Section 1.

~ §1. On intuitionistic model theory.
1.0. Inthispaper we study mathematical structures2 = (A4, R, ag, a1, ... , ;-1 )

where A4 is a set, R 1s a relation on 4, either a 1-ary relation, or a 2-ary relation or a
3-ary relation, and (ag, a1, . .. , a,,—1) i a finite sequence of elements of 4, so-called
constant elements of A. The signature (or similarity type) of such a structure will
be given by a pair of natural numbers (i, ) where i denotes the arity of the relation
and m the length of the sequence of constant elements. Structures 2, B with the
same signature will be called similar structures.

If A = (4,R,aq,ay,...,a,_1) is a structure and by, by,... ,b,_; is a finite se-
quence of elements of A, we will denote the structure (4, R, ag, ¢y, ... ,ty -1, b, Dy,

- :bn—l) bY (Q[: bD: bl: o :bm-—-l)*

To each pair (7, m) corresponds a first-order-language Ly The mathematical
symbols of L; ,,y are an i-ary relation symbol P and m distinct individual constants:
C0,Cly v v 5 Cin—1.

The formulas of the language L ;,,, are built up in the usual way, from the
mathematical symbols, the logical symbols and several auxiliary symbols such ag
brackets: and parentheses. Among the logical symbols of the language are the
connectives A, V, — and - and the quantifiers V, 3. Intuitionistically, it is impossible
to deﬁne any of them in terms of the others. The languages Ly; »y do not contain an
equality symbol.

X0, X1, X2,... 18 the list of individual variables of the language L, . Free and
bound occurrences of a variable x; in a formula ¢ are defined as usual. “A formula
¢ = d(xp,x1,...,%,-1)” means “a formula ¢ such that every individual variable
that occurs freely in ¢ is one of the variables X0s X1y oo , Xp_,
forlé:r.erylgg;iluz qEA;I;,(ig, i—h . ’f;”ml; ;Je a ?ﬁatihematic:al1stf*uc'ture. We define,
and ever it 0> %15+ .+, Xy—1) IrOM the appropriate first-order-language

y Iinite sequence by, by, ... , b, of elements of A, the statement:

A= ¢lbo,br,. .. byl (“éis true in the structure R if we interpret
() b}’ bO:xl b}’ bl: oy Xp—] b}’ b”_...ln)
Just as Tarski did, with the important proviso that connectives and quantificrs are

1nt§rpreted constructively. Observe that, for every formula ¢ = ¢{xy, x,... . x 1)
and every finite sequence by, by, . . . , by—) of elements of A4: o

Rl = ¢[b01b1:' ‘o an“l]iﬁ‘(m}bﬂjbl: K ,b”___l) I: QIJ!
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where ¢’ is the sentence from the language L; ., that we get from ¢ by replacing,
for every i < n, every free occurrence of the individual variable x; by the individual
constant ¢,,4;.

The following lemma 1s easy:.

LEMMA 1.2. Let A = (4,...) and B = (B, ...) be similar structures.

Let ¢ = ¢(x) be a formula from their common first-order-language. Suppose: for
every a in A there exists b in B such that: 2 (= ¢la] iff B = ¢[b].

Then:

(0 If 2 k= 3x[g(x)], then B = Ix[p(x)]
and
(i1) If B k= Vx[¢p(x)], then Y = Vx[p(x)]
Proor. The proof 1s a straightforward application of the truth definition. ~]

1.3. Let £ be one of our first-order-languages. To any formula ¢ from £
we associate a natural number, QD(¢), the quantifier-depth of ¢. If ¢ has no
quantifiers, then QD{¢) = 0. Further, QD (Vy[¢]) = QD(3y[¢]) = QD(¢) + 1
and QD(¢p Ay) = @D(¢ V y) = QD(¢ — v) = Max(QD(¢), 0D (y)). Finally,
QD (—¢) = QD(#).

1.4. We define some model-theoretic notions. Let A = (A4, R, ap, ai,. .. , Gy—1)
and 9B = (B, S, by, by, ... ,b,—1) be similar structures. For each natural number n,
A is n-elementarily equivalent to 8 (notation: ¥ =, B) iff for every sentence ¢ from
their common first-order-language: if QD(¢) < n, then A = ¢ iff B = ¢.

A is elementarily equivalent to B (notation: A = B) iff foreach n . A =, B.

For each natural number n, % is an n-elementary substructure of 28 (notation:
A <, B)iff A C B and for each finite sequence (cg,c1,... ,c,p—1) of elements of
2 (ﬁ: 1P %) PR Cpml) —n (%: COs Cly» v s ﬂ'p--*-l)*r

2 1s a substructure of B iff 2 is a O-elementary substructure of 8.

A is an elementary substructure of B (notation: 2 < *8) iff for each n: 2% <, B.

LEMMA 1.5 (Fraissé’s Lemma). Let U = (A,...) and B = (B,...) be similar
structures. Then, for each natural number n.

If Va € A3b € B[(N,a) =, (B,b)] and ¥b € BIa € A[(Y,a) =, (%B,b)), then
)t =n1 B,

Proor, The lemma follows easily from Lemma 1.2. -]

In our second Intuitionistic Intermezzo, Section 7, we show that the converse of
Lemma 1.5, classically part of a famous result of Fraissé’s, (see [1]), fails construc-
tively.

1.6. In this subsection, we introduce strongly homogeneous and back-and-forth-
homogeneous structures. We start with some preliminary definitions.

1.6.1. LetU = (A4, R,aq,ay,...,a,-1) bea structure. Without loss of general-
ity we assume that R is a binary relation on 4. We define an equivalence relation
~g On the set 4, as follows; for all a,b € A : a ~g b iff for every ¢ in A: ¢Ra iff
¢Rb, and aRc iff bRe.

~q 18 the finest equivalence relation on the set A that respects the relation R.
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Given any subset f of 4 x B we define f to be the closure of f under the
equivalence relations ~g and ~, thatis, / consists of all pairs (¢,d) in A x B such
that there exists ¢/, d’ in A, B respectively with the property: ¢ ~g ¢’ and d ~g d’
and {¢’, d’) belongs to f.

1.6,2, Let % = (A, R,CI(), édr, ... ,am_*_]) and B = (B, S, bg,bl, ‘o ,bm....l) be
similar structures. We assume, without loss of generality, that R, S are binary
relations on A4, B respectively. A subset f of A x B is called a local isomorphism
from U to B iff for all pairs (cg,dp), (cy,d) in [ @ coRey iff dpSd, and for all
i < m:{q;,b;) belongs to ]F

We use this definition of “local isomorphism from 2 to 8™ as equality 1s not men-
tioned in the language of our structures. There are many situations in constructive
mathematics where equality is a defined notion and not a primittve one.

For this reason, our notion of a local isomorphism from %! to itself slightly differs
from Fraisse’s notion, see [1].

A local isomorphism f* from % to B8 is called a homomorphism from 2 to B iff
for each ¢ in 4 there exists d in B such that (¢, d) belongsto f. A homomorphism
is called an isomorphism from 21 to 8, if, in addition, for each d in B there exists ¢
in 4 such that (c,d) belongs to 1.

Observe that, if A C B, then 2l 1s a substructure of B iff the identity mapping
from A to B, seen as a set of ordered pairs, 1s 2 homomorphism from 2 to 8.

Observe that, if f is a homomorphism from 2 to 98, then for all (¢q, dp), (¢, d1)
mn ?: If dy ~ dy, then cp ~q 7.

Observe that, if f is an isomorphism from 21 to B then for all (¢y, do), (¢y,d}) In
7: If co ~9 €1, then dg ~m d}.

An 1somorphism from % to itself 1s called an automorphism of .

1.6.3. Let® = (A4,...)beastructure. We say that 2 is strongly homogeneous ift
for all finite sequences (cg, ¢y, ... ,cp—1) and (dy, dy,. .. ,d,_1) of elements of A of
equal length: If (2, co,cpy. .. ,ep—1) =0 (A, do,d),... ,d,—1), then there exists an
automorphism f of 2 such that forall i < p : (¢;, d;) belongs to f.

Observe that, if (%, ¢g, ¢, . . . , Cp-—l) =q (%, dp, dy,. .., dp_1), then the Set{(()u, do),
(c1,d1), ..., {cp—1,d,-1)} is a local isomorphism from 2 to itself.

1.6.4. Let A = (4,...) be a structure. We say that ¥ is back-and-forth-

homogeneous iff for all finite sequences (co, ¢y,... ,¢,—1) and {(dy, dy, ... ,dp—1) of
elements of 4 of equal length: If (A, co,cy,...,cp—1) =0 (R, do,dy,... ,dp1),
then for every ¢ in A there exists 4 in 4 such that (%, co,c1,...,cp1,¢) =0

(A, do,dyy. .. ,dp_1,d).

Observe that 1t follows from Lemma 1.5 that, for each structure 2, if A 1s
back-and-forth-homogeneous, then for all finite sequences (cg,¢y,... ,¢,—1) and
(do, dy,...,dp—1) of elements of 4 of equal length, if (%, co,c1,... ,co-1) =0
(%, do, dy, ... ,dp—1) then (2, cq,cry. .. ,cp—1) =1 R, do,dy,. .. ,d,—1) (and also,
for each n 1n N, (QL, COsClgnesr y Cp-—l) =5 (Q[, dg, dl, Cee dp-—-—l))-

Observe that each strongly homogeneous structure (see Definition 1.6.3) is back-
and-forth-homogeneous.

THEOREM 1.6.5. Let U = (A,...) be a back-and-forth-homogeneous structure
and let ‘B = (B,...) be a substructure of U such that for every finite sequence
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(bo, b1, ... ,bp—1) of elements of B and every element a of A there exists an element
b OfB stch that (Q[, b(}, b], Ve bp_l, (Z) =0 (Q[, bg, bl, o ,bp__l,b). Then: B < 4.

ProOOE. One proves by induction that for each natural number », for every finite se-
quence (bg, b1,... ,by—1) of elements of B: (B, by, by, ... ,by—1) =n (Y, b0, b1, ...

by—1).
The induction step uses Lemma 1.5 and the remark 1 Section 1.6.4. -

§2. The structure (R, <) as an example of a strongly homogeneous structure.
2.0. We define a real number as a pair o = (o, &) of functions from the set N

of natural numbers to the set QQ of rational numbers such that

Vi € N[a/(n) <a'(n+1)<a(n+1) <a"(n)

and

Vg e QVr e Qg <r—dneN[g<a'(n)va'(n) <rll
l

(The latter condition is equivalent to: Vm € N3n € N{a" (n) — a'(n) < 57].)

The set of all real numbers will be denoted by R.
Intuttionistically, this ‘set’ is introduced as a subspecies of the spread of all

functions from N to @ x @Q. We will not go into details, but the reader may

consult [2] or [6] or [4].
2.1. We define a binary relation < on R, as follows:

foralla, SinR : a < Biff In € N[/ (n) < f/'(n)].

As is well-known, this relation < is co-transitive, that 1s, forall o, S,y mR: ifa < f
then either o < y or y < f. We define a function / from Q to R by: for each g in

Q:il(q) =(q',q") where, foreach nin N, ¢'(n) = ¢"(n) = g.
Observe that this function 7 is a homomorphism from (Q, <) to (R, <) and also,

for instance, from (Q, <,0) to (R, <,i(0)). Observe that forall o, f inR: if o < f8
then 3¢ € Q[a < i(g) and i(g) < f], that is, Q is embedded densely into RR.

LEMMA 2.2. Let f be an automorphism of the structure (Q, <), that is, an order-

preserving mapping from the set of rationals onto itself.
There exists an automorphism f* of the structure (R, <) such that for every q in

Q: f*(i(q)) = i(f(q)). thatis, f*oi=1io f.
We define

ProoF. Let /" be the given automorphism of the structure (Q, <).
its extension f* to R as follows: for each real number o = (o/,a”) : f*(a) :=
(f oa!, f oa'). One verifies easily that f* has the required properties. -

2.3. 'We define binary relations <, # and = on R, as follows: foralle, finR:

a £ B iff -(f < a), thatis Va € N[/ (n) £ "(n)]

a#f (“alies apart from f”) iffa < for f < o
a = f (“a coincides with £, o is equal to A7) iff ~(a#f), that is, & £ B and

f s e
Observe that = is the equivalence relation belonging to the structure (R,
sense of Section 1.6.1: for all o, § in R:

a=fiffforeveryymR: y<aiffy< fanda<yiff f <y

<) in the
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Observe also that the relation # is co-transitive:

for all ¢, B, y in R: if a#f, then either a#y or y#/.

We formulate an extension of Lemma 2.2,

LEMMA 2.4, Let f be a local isomorphism from the structure (Q, <) to itself such

that both the domain of f, Dom(f'), and the range of f, Ran(f') are dense in Q.
There exists an automorphism f* of the structure (R, <) such that Vg € Dom(f)

[£*(i(g)) = i(/ ()]} )
(A subset A of Q is called dense in Q iff Vg, r € Q[If g <r, thenda € Alg < a <

-l

ProoE. The proof is similar to the proof of Lemma 2.2. Observe that, for every
subset A of Q that is dense in Q, every real number coincides with a real number
g = (', ") such that both f’ and f” are functions from N to 4. ~

LEMMA 2.5. Let (e, @1, ... , p—1) be a finite sequence of real numbers. Define a
subset A of Q as follows: A:={q € Q|Vj <mli(g) < a; Va; <i{g)]}. Then:
(i) There exists a functiony : N — Q such that A = {y(n) | n € N}, that is: A
is an enumerable subset of Q.
(ii) Every finite sequence (by,by,... ,b,) of m + 1 different rational numbers
contains at least one member of A.
(iii) A is dense in Q.

PROOF.

(1) Let g9, 41, ... be an enumeration of the set Q of rational numbers. Let p be
an element of A,

Foreachnm N, let g and | be the natural numbers such that n = 2" (2s,+1)—1.

We define the function y as follows. For each # in NifVj < m][q,, < o (ny) v
a“}’(n.l) < qno], then p(n) := gy, if not, then y(n) = p. |

It 1s easy to see that y enumerates A.

(ii) One may prove by induction that for each natural number > 0, if
(Bo, Bt ..., Bm) and (g, e,... ,0n—y) are finite sequences of real numbers of
ler}gth m+ 1 and m, respectively, and M\, <., Bi#p;, th|en Viem Njem Bite.

f m = 1, use the co-transitivity of the apartness relation. In the induction step,
use a simple combinatorial argument,

(iii) Follows from (ii). n

THEOREM 2.6 (The structure (R, <) is strongly homogeneous). Let (o, vy, ... ,
Q1) and (ﬁo,ﬁl,,) L ,ﬂ(m_l) be finite sequences of real numbers such that (IR,
< Q0,0 0pe1) S (R, <, fo, B Bin-1) that is: ¥j < mVk < n
‘ 2 s My Plyees - ' Qe ; < vy
8 < el s
There exists an automorphism f of the structure (R, <) such thatVj < m[f ( 1) =

pil
PRrOOF. Consider 4 := {g € Q |V <mli(q) < a;Va;<i(g)land B := {¢ ¢

QVi<mli(g) < BV B <i(g).

It p belongs to 4 and r belongs to B we say that p is similar to r Y/ _
oy iff1(r) < f] ; ay that p is similar to r iffVj < m[i(p) <
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Observe that, given any p in 4, there exists at least one » in B that is similar to
p, and therefore mfinitely many, as Vj < mVk < m[a; < oy iff f; < fi]. Likewise,
given any r in B, there exist infinitely many p in A that are similar to r.

We also know, from Lemma 2.5, that both 4 and B are enumerable subsets of Q0. It
is possible, therefore, to establish, by a Cantor back-and-forth-argument, a mapping
g from A onto B that 1s order-preserving and such that for every p in 4, p is similar
to g(p). According to Lemma 2.4 g extends to an automorphism f of the structure
(R, <). Itis easy to see that Vj < m[f (c;) = ;] as Vj < mVg € A[i(q) < o; iff
i(g(q)) < Bl .

§3. Some elementary substructures of (R, <),

3.0. In this section we consider classes of subsets 4 of R with the property
(4, <) < (R, <).

3.1. We call a subset 4 of R an open subset of R iff Voo € 435 € RIy € R[f <
a<yAVo € R[f <0<y — 0 € A]]. Observe that, for each open subset 4 of R,
for each « in A4, for each ¢ in R, either a#{ or { € 4. (Determine £,y in R such
that f<a<yand Vo e R[f <d <y — 0 € A]. Then: f < {V{ < « and
a < (V{<y, Therelore,either: { < axora < or: fi<{ <y, thatis: either af#
or{ € A.)

Similarly, for each open subset 4 of R, for each finite sequence o, ey, ... , @y -1
of elements of A4, for each ¢ in R, either Vj < m[a;#{]or { € A.

We call a subset 4 of R inhabited iff do € Rl € A], that is, iff we are able to
indicate at least one element of 4.

TuEOREM 3.1.1. Let A be an open and inhabited subset of R. Then (A4, <) < (R,
<).

PrOOF. According to Theorems 1.6.5 and 2.6 it suffices to show: for each finite
sequence (ap, a,... ,&y,—1) of elements of 4, each ff in R, there exists & in A such
that

(R: <: CE(),lel,- ' o Jam-—*l:a) EU (R: <J aﬂ: lel,. ‘' Jam*-hﬂ)'

Let (e, y,. .. , 0, 1) be a finite sequence of elements of 4, and let § be an element
of R,

As we saw In Section 3.1 we may distinguish two cases:

Case (1). Vj < m[a;#f]. Tt is possible to find « in 4 such that Vj < m[(a; <
ala; <fN(a<a; 2 f<a)
Case (2). S belongs to 4. We may define o 1= §.

If m = 0, we need the assumption that 4 is inhabited. -

3.1.2. For each «, f In R we define: (o, f) = {y € R | @ < y < f}, that is:
(e, #) 1s the open interval determined by «, £. It follows from Theorem 3.1.1 that
both the set (0, 2) and the set (0, 1) U (1, 2) give rise to an elementary substructure of
(R, <). Therefore also ((0,1) U (1,2), <) < ({0,2), <). This re-establishes a result
contained in [8] but actually proved for the first time by Tonny Hurkens.

Theorem 3.1.1 seems to be a proper generalization of this result. It implies also,
for instance, that the set (0,2) U {x € R] 1 < x < 3 and “Riemann’s hypothesis”}
gives rise to an elementary substructure of (R, <).



752 WIM VELDMAN AND FRANK WAALDIJIK

The proof that we gave of Theorem 3.1.1 1s essentially the same as the proof of

its special case given 1n [8]. )
3.2. Wecall a subset 4 of R dense inRiff Ve e RV e Rla < f— dy € Ala <

y < Bl
THEOREM 3.2.1. Let Ao, Ay, ... be a sequence of dense and open subsets of R.
Then:

PrOOE. According to Theorems 1.6.5 and 2.6 it suthices to show:
For each finite sequence (ag, ), ... ,an—1) of elements of [,y Ax, €ach f
in R, there exists o in (), .y 4n such that (R, <,cp,01,... ,0m-1,) =0 (R, <,

Qp, XLy v v e &1, ﬂ)
Let (ap, ay,... ,0,—1) be a finite sequence of elements of ), .y 4, and let 5 be

an element of R,

As we saw In the remarks preceding Theorem 3.1.1, we may decide, for each
natural number #, either Vj < m[o;#f]or B € 4,.

Using an axiom of countable choice we determine a function y from N to {0, 1}

such that Vu[y(n) < y(n + )] and Vr[(y(n) =0 = f e A,) A(y(n) =1 - V) <
mla;#])]
Let (g0, 70), (g1, 71),... be an enumeration of all pairs (g, r) of rational numbers
such that g < . |
We now define a real number o = (@', a”), step-by-step, first defining o/ (0), a"(0),
then a/(1), (1), and so on. We take care that, for each natural number »:
(i) &/(n) <a'(n+1)<a(n+1) <" (n).
(ii) Either g, < o/(n) or a’(n) < r,,.
(i) (i(c/(n)),i(a"(n))) C 4,
(iv) Ify((n)) = 0, then there exists p in N such that o/(#) = #/(p) and o’ (n) =
5" (p).
(v) If y(n) = 1 and Vi < n[y(i) = 0], then for each j < m, i(a/(n)) < a; iff

i(a"(n)) < a;iff f < o;and a; < i(a/(n)) iff a; < i(a”(n)) iffa; < f.

We leave it to the reader to verify that it is possible to construct o, &' in such a
way that these conditions are satisfied and that, if we do so, « is a real number that

belongs to DHEN A, and (H: NS T PRI s S Cl’) =0 (R; < Dy ey By, /8)

COROLLARY 3.2.2. Let oy, evy,... be a sequence of real numbers and let A be a
subset of R such that Vo € R[Vn € N[a#a,] — a € A].
Then: (4,<) < (R, <).

, 2]??001?. Define, foreach n € N, 4, := {a € R | a#a,} and apply Theorem
2.1 .

3.2.3. Corollary 3.2.2 implies that the set {a € R | Vg € Q[i{q)#a]} gives rise
to an elementary substructure of (R, <), a result proved in [7].

Theor§m 3.2.1 seems to be a proper generalization of this result.
There is another application of Corollary 3.2.2.
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Consider the open mterval 7 = (—1,1) and its subintervals

IO:"<”%::’1§> Il :<%J%> I—l :(_%:“Jj>:'“:
n n»—l)j I_, = < n+] M >,- .

+1? n4-2 n+2?  ndl

This division of the interval (—1,1) into subintervals translates naturally into a
similar subdivision of any given interval 4 = («, ) (such that o < f8) into intervals
Ag, A1, A_1,... and so on.

We now associate to any non-empty finite sequence a = (ag, ay,... ,a,—1) of
integers an open mferval 4, in R, as follows:

A(O) L= (-——-1, 1),A(1) = (1,2),A(_1) $ = (*--2,”1),44(2) = (2,3), ; and for
each non-empty finite sequence a = (ay,...,ay—1) of integers for each integer
no Ag a1 = (A« _Jn- This system of open intervals generates a

mapping j of the set ZN of all infinite sequences of integers into R: for each
sequence « of integers j{a) is a real number that, for each natural number m > 0,
belongs to A(a(0),2(1).... alm—1))-

The range of this function j comncides with the set of all real numbers that lie
apart from every endpoint of any interval 4,, and thus, according to Corollary
3.2.2, gives rise to an elementary substructure of (IR, <).

We define a binary relation <* on the set ZV: for all o, # in ZY : o <* f if and
only if Infa(n) < fln) AV) < nleal)j) = B()I1

One now sees that j is an elementary embedding of the structure (ZN, <*) into
the structure (R, <). Therefore, (ZN, <*) and (R, <) are elementarily equivalent
structures.

This answers a question left open in [8].

3.2.4. The lexicographical ordering <* may be defined on the set QY of all
sequences of rationals as well as on ZY: for all o, f in QY : @ <* B if and only
if Anfa(n) < B(n) AV] < n[a(j) = B(/)]]. The structure (QV, <*) also embeds
elementarily into the structure (R, <).

We see this as follows. It suffices to embed (QN, <*) into ((—1,1), <). We leave it
to the reader to associate to each rational number ¢ an open interval J, = (j,, j')
in (—1, 1) in such a way that (i) for each ¢, in Q: if ¢ < r, then j// < j; and (1)
the set | J{J, | ¢ € Q} is dense in (—1,1) and (iii) for each ¢ in Q, the length of
Jy, that is, j,' — j,, is less than 1. We may construct, to any given open interval
B = (f’, ") a similar system (B, ),cq of subintervals of B, such that for each ¢ in
0, the length of B, is less than (" — #').

We now associate to any non-empty finite sequence b = (by, by,... ,b,—1) of
rationals an open interval B;, in (—1, 1) as follows:

for each rational number g : B, := J,, and for each non-empty finite sequence
b = (by, by, ... ,by,-1) of rationals, for each rational number ¢ : By, ;..

('B(b{] hl o D ..._]))fj'
This system of open intervals generates in the obvious way a mapping & from the

set QN to the set R that satisfies, for all o, f in QY if & <* B, then k(o) < k(B).
Observe that the range of this mapping coincides with (1, .y Upegn Br, and
thus with a countable intersection of dense and open subsets of (—1,1). Accord-
ing to Theorem 3.2.1, the range of k gives rise to an elementary substructure
of ((—1,1), <), and therefore, k is an elementary embedding from (QY, <*) into

."‘hlll—l'

e P = | :ff) T
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((~1,1), <) and also into (R, <). So (Q, <*) and (R, <) are elementarily equivalent
structures and (QVY, <*) and (Z", <*) are elementarily equivalent structures. The

latter fact was stated without proof in [8].
One may verify that the structures (ZV, <*) and (Q", <*) are both strongly

homogeneous and that (ZN, <*) is an elementary substructure of (QN, <*). |

3.3, We will reprove and generalize some results from [7]. We introduce a third
kind of elementary substructures of (R, <).

3.3.0. Let 4 be a subset of R. We call a real number « a left accumulation point
of AiffVy € R[y < o — 35 € Ay < § < «]], we call « a right accumulation point of
AiffVy e Rla < y — 30 € Ala < 6 < y]], and we call a a two-sided accumulation
point of A if v is both a left and a right accumulation point of 4. We say that A 1s
a <-coherent subset of R iff every element of A4 is a two-sided accumulation point
of A. (Constructively, this is somewhat stronger than saying that 4 has no (left- or
right-) isolated points.)

3.3.1. Itis not true constructively that every <-coherent subset of R gives rise
to an elementary substructure of (R, <). We mention two counterexamples. A
first counter-example is the set {i(q) | ¢ € Q}. The formula VxVy[xPy V =(xPy)]
holds in the structure (Q, <), but by a weak version of the intuitionistic continuity
principle, its negation is true in (R, <), as we will see in Section 5. Let us define,
foreacho, fIn R, [, f) :i={y € R | @ £ y < B}, that is the left-closed-right-open
interval in R determined by o, . A second counterexample is the set (—1,0) U[0, 1).
The formula 3xVy[-(yPx)VyPx] holds in the structure {{—1, 0)U[0, 1), <) whereas,
again by a weak version of the intuitionistic continuity principle, its negation holds
in the structure (R, <), (These facts are shown in [8].)

3.3.2. We call a subset 4 of R a stable subset of R iff Voo € R[-~(ax € 4) —
a € A

We call a subset 4 of R a real subset of Riff Va e RV e R[{ae € A A x = B) —
p € A

Observe that every open subset of R and also every subset of R that is a countable
Intersection of open subsets of R is a real subset of R.

We will show that every inhabited, real, stable and <-coherent subset of R gives
rise to an elementary substructure of (R, <).

We need the following lemma.

LEMMA 3.3.3. Let 4 be a <-coherent subset of R.

For every finite sequence (cw, auy, ... , aw—y) of elements of A, for every B in R:
(i) IfVj < mla; < B, then 3y € AV < mlo; <y < f]
(i) If Vj<m[f < a;] thenIy € AVj < m[B < y < o]

PROOF. We will prove (i), leaving (ii) to the reader.

Suppose Vj < m[a; < f]. Determine 00,01,... ,0m—1 in A such that Vi <
mla; < 0; < Bl Define yo, y1,... ,ym_1 i A mductively, as follows: Let yg := &y.
Observe: ap < yp < fand o < §; < f and distinguish two cases: case (1):
@) < yo, then take y; := yp and observe: oy < y; and o < 1 0T case (2): yo < &,
then take y; :=d; and observe: ap < y1 and o) < ;.

Continue in this way. Choose one of the statements “o, < Y1~ or “y1 < d,” and
prove it. If you chose the first one, et Y2 \=y1, 1t not, let ¥, := &,. And so on.

After m steps we find y := y,,_; such that Vji<mla;<y< Bland: y € A.
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(Observe that we have some freedom when carrying out the above instructions, as,
in general, case (1) does not exclude case (2).One may however obey the following
rule (we consider the definition of ¥, ): wait for the first natural number » such that
either o (1) < yo(n) oryy (n) < yi(n), say ng, and follow case (1) if o]’ (ng) < §(np)
and case (2) if not &' (ng) < y4(ng)). =

THEOREM 3.3.4. Let A be an inhabited real, stable and <-coherent subset of R.
Then (A, <) < (R, <).

Proor. According to Theorems 1.6.5 and 2.6 it suffices to show that for each
finite sequence (g, @1, ... ,a,;—) of elements of 4, each f in R, there exists o in A
such that (R: < Q0 Oy oo v 3 Oy le) =) (R: SO0, Oy vy Oy, ﬂ)

Let («, @1, - . , @m-1) be a finite sequence of elements of 4, and let § be a real
number,

We now define a real number o« = (o/, a”'), step-by-step, first defining ' (0), o’ (0)
then o’/(1), &’/ (1), and so on.

3

Step 0. We dlstlngmsh two cases.

Case (1): 3j < m[a’(0) < f"(0) A p'(0) < o/ (0)].
We define

a'(0) = Min({#"(0)} U {e;(0) | j < m | a}(0) < B"(0) A §'(0) < f(0)})

and

o' (0) = Max({8”(0)} U {a/(0) | j < m | a}(0) < B"(0) A B'(0) < /(0)}).

Case (2): Vj < m["(0) < «(0) vV &}/ (0) < £/(0)], and therefore: Vj < m[f <
a; Va; < f]. Using Lemma 3.3.3 we determine y in 4 such that Vj < m[(f <
a; =y < aj)A(a; < f — a; <y). We define, for each natural number »:

a'(n) :=9'(n) and a” (n) = y"(n).
Step 1. We take this step only if we did not have Case (2) in Step 0. Again, we
distinguish two cases.

Case (1): 3j < mle;(1) < (1) A B'(1) < &/ (1)].
We define

o' (1) = Min({f (1)} U{e/ (1) | j < m | a}(1) < B7(1) A B'(1) < af (1)})

and
(1) = Max({f"(1)} U{a)(1) | j <m | aj(1) < B"(1) A B/(1) < af (1)}).

Case (2): Vj < m[f"(1) < aj(1) V&7 (1) < B'(1)], and therefore: Vj < m[f <
X V ;i < ﬁ].

Determine jo < m such that o/(0) < o) (0) < & (0) < ”(0). Without loss
of generality, we may assume: «;, < f. Using Lemma 3.3.3 we determine y in 4
such that: y < fandVj < m[{f < a; = y < ;) AMa; < f — a; < y)] and:
a'(0) <y'(0) < 9"(0) < a”(0).

We define, for each natural number n, o’(n + 1) :=9(n +1) and &’ (n + 1) :=
y"(n+1).

And so on.
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We leave it to the reader to verify that o is indeed a real number. We show
that « belongs to 4. Remark that, if Vj < mla; < LV [ < a], then o € A.
If on the other hand, -Vj < mla; < fV [ < @] then f = a.and | ..._] <
m[f = «;]. (As this step requires some familiarity with constructive reasoning,
we spell it out. Suppose —=3j < m[f = c;]. Then ‘v’j < m[j(ﬁ = ay)), that' 18,
Vi < m-ﬂ"ﬂn[a}’(n) < B(n) Vv p"(n) < aj.(n)]. This is equivalent to :""l“"l\vlj .<
manlaf(n) < B(n)V B"(n) < oj(n)], (double negations commute with finite
conjunctions), that is =—Vj < m[a; < fV f < o;]. Contradiction. Therefore:
--3j < m[f = a;].)

Therefore, if ¥/ < m[a; < BV B < ], then ~—(a € 4), and thus, @ € 4. (We
use the fact that A is a real and stable subset of R.) As -~(Vj < mfe; < fV <
a;]V-Vj < mla; < VB < a;]), we conclude: =—(c € 4), and again: a € 4.

| Finally, WE Prove that (R, <, O, ¥y v, Cpp—1, CE) =0 (]R{}, <, 0, Xy e v v , p—1, ﬁ),
thatis, Vj < m[(a; < @ 2 o; < f) A e < a; 2 f < a;)]. We only prove that
Vi< mla; <o P a; < f], leaving the second part to the reader.

First, suppose jo < m and o, < «. Determine a natural number » such that
a'f (n) < o(n). Observe that either o (n) < B'(n) (and therefore ae;, < B), or the
construction of a has been completed at stage n or even earlier, as we discovered
that Vj < m[a; < fV B < a;]. Inthe latter case we know that o, < o 2 ¢, < f,
therefore o, < f.

Next, suppose jo < m and a;, < fi. By the co-transitivity of the relation < we
know that Vj < mlaj, < a; Voy; < Bl.

Determine a natural number » such that o (n) < '(n) and Vj < m[a/ (n) <
aj(n) v af(n) < p'(n)]. Observe that either o'(n) > Min({p'(n)} U {a}(n)|j <
m|f'(n) < of(n)}) (and therefore, as for each j < m, if f'(n) < o/ (n), then
o (n) < o(n), we know that o) (n) < o/(n), that is, o, < @, or the construction
of a has been completed at stage n or even earlier as we discovered Vj < m[a; <
pV B < ;] In the latter case we are sure that o, < o & «;, < f, therefore
aj, < Q. ~

COROLLARY 3.3.5. Let A be a dense subset of R. Then: the set {a € R | =—3f €
Al = f1} gives rise to an elementary substructure of (R, <).

The proof of this corollary is immediate. In particular, as was observed in [7],
both the set of the not-rational and the set of the not-not-rational real numbers give

rise {o an elementary substructure of (R, <). (On this example, see also Section
5.3.)

§4. Intuitionistic Baire space .#" is also strongly homogeneous.

4.0. In this section we consider the set .# of all infinite sequences of natural
numbers, also called the universal spread or intuitionistic Baire space. An element
« of A 18 a function from the set N of natural numbers to itself. Given elements
a, p of & we say: a#off ( lies aparty from ) iff In € N[a(n) # B(n)]. We will see
that the structure (', #) is strongly homogeneous in the sense of Definition 1.6.3.

41, N* =1,y N" is the set of all finite sequences of natural numbers. * is the
binary operation of concatenation on N*, that is, for all @ = (a(0), «(1),. .., a(m —

1)) and b = (b(0),5(1),...,b(n — 1)) in N*, a % b denotes the finite sequence
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obtained by putting 5 behind a, thatis: a+b = (a(0),a(1),... ,a(m-1),b(0), b(1),
..,b(n—=1)).

Given a,b in N*, we say: a C b (“the finite sequence a is an initial part of the
finite sequence b”) iff de € N*[a * ¢ = b].

Given « in N, n in N, we define @(n) := («(0), a(1),...,a(n — 1)), that is the
finite sequence of length » that is an initial part of the infinite sequence «.

LEMMA 4.2. Let (ap,ay, ... ,am—1) and (o, B1s- .., Pu—1) be finite sequences of
elements of A" such thatVj < mVk < mla;#ocy, 2 Bi#ofr] ThenV¥ndp > nV¥j <

mVk < mla;(p) =a(p) 2 B,(p) = B (p)]].
ProoOF. Define, for each » in N:

Ay ={ k)| j<mk < m|d;(n)+#a(n)}
B, ={(jk)|j<mbk<m]|p;(n)+#p.(n)}

The assumption 1mmplies:
VvneNdpeNp>nA(4,=8B,VA,# A4,V B, # B,)].

Observe that, foreachn m N, 4, C A4, and B, C B,.|, and A4, and B, are
decidable subsets of {0,1,... ,m — 1} x {0,1,... ,m — 1}. Therefore Vvn € Ndp ¢
N[p >nAA, =B, ¥

TaeOREM 4.3 (The structure (', #g) is strongly homogeneous). Let (e, ¢y, . . . |
Q1) and (fo, P1, - - . » Bm—1) be finite sequences of elements of N such that

('/V:#Dna():&l:” ' :am-—l) =0 (W:#U:ﬁﬁrﬁla' ' 1ﬁm-——-1):

that is.

Vi< mVk < mlai#ooy 2 fi# 0]
There exists an automorphism f of the structure (N, #o) such thatVj < m[f(a;) =
pil

PrOOF. By Lemma 4.2 there exists a strictly increasing sequence po, pi, P2,... of
natural numbers such that Vi € NVj < mVk < m[a;(p,) = @ (p.) & B;(ps) =

HIB—].; (pn)]'

Determine, for each » in N, a permutation f, of N, the set of finite sequences
of natural numbers of length p,, 1n such a way that

Vn e NYj < T?T[fn(ﬁj (Pn)) — Fj (pn)]

and

Vn € NVa € N"Wb € NP [g T b — f,(a) T f,.(b)].

Let f be the mapping from N to N that is determined by: Vn € N[/ (a)p, =

fn(@(pn))]
It is easy to see that f fulfils the requirements. 5



758 WIM VELDMAN AND FRANK WAALDIJK

4.4, We determine an important class of elementary substructu.res of (A, #y).
Let A be a subset of N. We say that A is a #g-coherent subset of # If Vo € AVn €

N3B € A[f#oa A fn = @n]

THEOREM 4.5. Let A be an inhabited, stable and #y-coherent subset of . Then
(A4, #y) < (A, #).

Proor. The proof is similar to the proof of Theorem 3.3.4. -

4.6. 'We mention two applications of Theorem 4.5. | |
4.6.1. LetAbeasubsetof /. Wesaythat A4 is a spread iff there extsts a decidable

subset B of the set N* of finite sequences of natural numbers such that the empty
sequence () belongs to B and for every a € N*, if a € B, then Infa  (n) € B]
and Vo € #[a € A 2 Vn[an € B]]. It is easy to see that every spread 18 an
inhabited and stable subset of .#". Therefore, if 4 is a #j-coherent spread, then
(-A:#U) - ('/VJ #U)

4.6.2. It follows from Theorem 4.5 that, if A4 1s an inhabited #y-coherent subset
of #and C:={p €W | (B € A)} then (C,#;) < (A, #y).

Take for example 4 := {a € A" | InVm > nja(m) = 0]},

Intuitionistically, the structure (A, #p) is not elementarily equivalent to the struc-
ture (", #o) as the formula VxVy[xPy V —=(xPy)] is true in (A4, #y) whereas, by a
weak continuity principle, see Theorem 5.1, its negation holds in (/' #g).

On the other hand, ({e € # | =—3InVm > n[a(m) = 0]}, #) < (#, #o).

We will discuss this example again in Section 5.3.

§3. First intuitionistic intermezzo: the continuity principle and some of its conse-
quences.

5.0. The famous continnity principle may be formulated as follows:
5.0.0.

CP For every'subset C of # x N:
IfVa € #3n € N[C(a, n)], 3
then Voo € #'3n € Nam € NV € #[a(m) = B(m) — C(B,n)].

(Compare [4, *27.15] and WC — N in [6].) We will not go into an extensive
justification of this principle. Roughly, the idea is that if we are able to associate
effectively a natural number to every infinite sequence o of natural numbers, we
will be able to do so even for infinite sequences that are the result of a step-by-
step-construction. Moreover, any infinite sequence, even if it admits of a finite
description, may be the result of such a step-by-step construction.

CP 15 sometimes called the weak continuity principle.

Here is an even weaker version:
5.0.1.

CP' For all subsets 4, B of 4
IftVa € #[A(a) Vv B(a)],
then Vo € #3m € N[VB € #[@(m) = B(m) — ALV
VB e Halm) = f(m) — B(B)]]

CP also admits of a generalization that is eastly seen to be equivalent to it in the
context of elementary intuitionistic analysis:
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5.0.2,

GCP For every spread A, and every subset C of 4 x N:
If Voo € 43n € N[C(a, n)], B
then Vo € A3n € Ndm € NVf € A[a(m) = f(m) — C(B,n)]

0 is the element « of N such that Vr € N[a(n) = 0].
Theorems 5.1 and 5.2 mention two well-known consequences of the continuity

principle.
THEOREM 5.1. —Va € #[a#s0 VvV —~(a#0)].

PROOF. Suppose Va € #Ta# 0V —(a#q0)].
Applying CP’ one finds m in N such that Va € #[a(m) = 0(m) — « = 0], an
obvious contradiction. -}

An easy extension of Theorem 5.1 shows that the formulas Vx—Vy[xPyV-(xPy)]
and (hence) “VxVy[xPy V —(xPy)] are valid in the structure (/, #g), a fact we
referred to mn Section 4.6.2. In order to obtain a similar result on the structure
(R, <) we introduce the following notion.

Let (go,70), (g1, 71),... be a fixed enumeration of all pairs (g, ) of rational num-

bers such that g < r.
A canonical real number 1s a pair o« = (a’,a”) of functions from the set N

of natural numbers to the set Q of rational numbers such that Vn € N[o/(n) <
o'(n+1) <a’(n+1) <o (n)]and Va € N[g, < a'(n) V o' (n) < r,].

Via some coding of pairs of rational numbers by natural numbers the set R, of
the canonical real numbers may be conceived as a spread.

Let 0" be some canonical real number « such that Vn € N[o/(n) < 0 < a'(n)].

THEOREM 5.2. —Va € Rla < 0* V =(a < 0*)].

PROOF. Suppose Vo € Rl < 0* V =(a < 0*)].
Then Vo € Reyp[ee < 0* vV =(a < 0%)].
As Ry 15 a spread, we apply GCP and find m in N such that

Ve € Reanl(@?(m) = 0¥ (m) Aa?(m) = 0" (m)) — —(a < 0*)].

Thisiscontradictory as there exists a canonical real number o such that i ( 10%(m)) =
a and a/(m) = 0% (m) A a”(m) = 0" (m). (Observe that 50*'(m) < 0.) .

It follows from Theorem 5.2 that the formulas

Jy-Vx[xPy V =(xPy)]
and

—VxVy[xPy V =(xPy)]
are true 1n the structure (R, <) whereas the formula

VxVy[xPy V —(xPy)]

18 true in the structure (Q, <).

Observe that the formula Vx—Vy[-(yPx) Vv yPx] is also true in (R, <) and that
for every o in (—1,0) U [0,1) either o < 0 or 0 < «@. Therefore, the formula
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IxVy[—=(yPx) V yPx]is true in ((—1,0) U[0,1), <). One might say that the latter
structure contains a left-decidable point. Using left- and right-decidable points one
may show that there exist, in an intuitionistically precise sense, uncountably many
dense subsets of R that give rise to mutually elementarily different substructures of
(R, <), see [8], where a similar result is obtained for the structure (/#, <*).

[n a forthcoming paper by the second author a stronger result will be established:
there exist uncountably many subspreads of /#" that give rise to mutually elementarily
different substructures of the structure (', #). Observe that #; may be defined in

terms of <*, but not conversely.

5.3. Consider B := {a € # | =—3nVYm > n[a(m) = 0}}.

We have seen in Section 4.6.2 that (B, #q) < (', #0).

This implies, for instance: —-Va &€ BYf € Bla#yf V —(a#yf)]. This is not
surprising and may be proved more directly as follows. Consider 7' 1= {a € A |
VmVn[(a(m) # 0Aa(n) # 0) — m = n}}. One verifies easily that T is a spread, that
0 €T C Bandthat Ve € TV € Tla#f Va = f],as 2V € T[0# Vv 0 = f].
The latter fact, like Theorem 5.1, 1s an easy consequence of the continuity principle.

Consider D := {a € R | »-3g € Qo = i(q)]}. Just after Corollary 3.3.5 we
observed that D gives rise to an elementary substructure of the structure (R, <).
Therefore, Vo € DVYf € Dl < f#V ~(a < f)]. Again, this is not surprising.
Consider U = {a € Rean | Vn[a'(n) < 0 < a”(n) VIm > 0e/(n) = 1 =
o (n)]]}. U like Reyy itself may be seen as a spread, and Vo € U[-—(a = 0*VIm >
Ol = i(--)])]. Therefore U C D. Also 0* € U and Vo € Ula < 0%V ~(a < 0*)].
The latter fact, ike Theorem 5.2, is an easy consequence of the continuity principle.

5.4. Unlike (R, <) and (//, #y), see Theorems 2.6 and 4.3, the structure (R, #)
15 not strongly homogeneous. Although (R,#,0,1,2) =y (R,#,0,2,1), there is
no automorphism f of the structure (R, #) such that £(0) = 0, (1) = 2 and
f(2) = 1. (Somewhat inaccurately, we are using 0,1,2 to denote (0), (1) and i (2),
respectively.)

For suppose there is, and let f be such an automorphism. Observe that 1 is a
strongly injective function from Rto R, thatisVa € RYS € Rla#f — f(a)#f(8)]
In particular, Ve € [0, 1]{ f (a)# £ (2)], therefore Va: € [0,1][f (a) < 1V f(a) > 1].
Applying the method of successive bisection we find a sequence (ay, Bo), (ey, B1), . ..
of pairs of real numbers such that ety = 0, fy = 1, for each » in N either o, | = o,
and fy41 = %(an + ) or fuii = P, and Kptl = ';j(‘l’r: + Br), and f(a,) <
LS (Ba) > 1.

Let « be a real number such that Vnlo, < o < p]. By a famous consequence of

the weak continuity principle CP, f is continuous in o and therefore f(a) =1, but
also a#2 and f(2) = 1. Contradiction.

86, Thestructure (R, #) as an example of a back-and-forth-homogeneous structure.
6.0. We show that the structure (R, #) is back-and-forth-homogeneous.
6.0.0. Leta = (a’,a”) be a real number as defined in Section 2.0. For each »

in N we define a(n) := (a/(n), o’ (n)). In this way, the real number o is seen as a
function from N to Q@ x Q.

We introduce some more notations.
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If (a,b) and (c,d) belongto Q@ x Qand a < b and ¢ < d, we say
(a,b) < (c,d) iff b <c (“(a,b) lies to the left of (¢, d)”)
(a,b) < (c,d) iffa <d (“(a,b) does not lie to the right of (¢, d)”)
(a,b) # (c,d) iffb<cVd<a“(a,b)lies apart from (¢, d)”)
(a,b) = (c,d) iffc <bAa<d(“(a,b)touches (c,d)”).

If E is a subset of {(g0,91) | 90 € @, q1 € Q| g0 < g1} we say that (E, ) is
co-transitive iff for all ¢, b,c in E, if a % b, then either ¢ 5 a or ¢ % b, (See the use
of this term in Section 2.1.) This is equivalent to saying that the structure (E, ~) is
transitive, that is, forall ¢, b,c in E,if a = b and b = ¢, then a = ¢,

LEMMA 6.0.1, Let (o, ovt,... ,0m—1) be a finite sequence of real numbers. Then
Vndp > n[({ao(p),a1(p),... ,cm-1(p)}, =) is transitive].

Proor. This follows from the co-transitivity of the structure (R, #).

Define, foreach n in N, 4, := {(i,j) | i <m,j < m | a;(m) % a;(m)} and
Cy = {a;(n) | i < m}, and observe Vnip > n[(C,, #) is co-transitive VA4, G 4,].
As, foreach n in N, 4, is adecidable subset of {0, 1,... ,m~1} x{0,1,... ,m—1},
this implies Vn3p > n[(C,, %) is co-transitive)].

Another useful observation is the following analogue of Lemma 4.2.

LEMMA 60.0.2. Let (&50: &1y 1&”?--1) and (ﬁOJ /}1: JUICY ﬁmw—-l) be ﬁ?ﬂfé? SCGUERCES
of real numbers such thatVj < mVk < mla;#ay & [;#,] Then Vndp > n¥j <

mVk < mla;(p) = ar(p) 2 B;(p) = Be(p)]

PROOF. Define, foreachnin N, 4, == {(i,j) | i <m,j < m | a;(m) % «;(m)}
and B, :={(i,j) | i<m,j<m| fi(m) % f;(m)}. Observe that Vndp > n[4, =
B,V A” S ApV B, & = Bp). As, foreachnin N, 4, and B, are decidable subsets of
{0,1,...,m—1} x {0,1,... ,m — 1}, this implies Vadp > n[Ad, = B,]. -

LEMMA 6.0.3. Let (o, cef,... ,00n—1) and {(fo, i, ..., Bn—1) be finite sequences
of real numbers such thatVj < mVk < mla;#oy & [;#Pr]. Then, for every a in

R: \V’”EP > n[({ﬂ{(})): CH{}(P): C'ﬂl(ﬂ): v o1 ,CE”-,.__.I(IJ), ﬁﬂ(p): ﬁl (P): O :ﬁnrml(P)}J m)
is transitive andVj < mVk < mla;(p) = o (p) 2 B;(p) = Bi(p)]

Proor. Define, for each nin N: C, := {a(n), ag(n),a1(n),... ,am-1(n), foln),
pi(n),...,Pu_1(n)}. Using Lemma 6.2.1, we find a strictly increasing sequence
po, P1, - .. of natural numbers such that \:?’n[( e R2) 18 transitive]. Now define,
for each nin Nt 4, = {{i,j) | i < m,j < m | ai(py) % a;j(ps)} and B, =
{G,j) i< mj<m]| Bilps) # [)’_,-(p,,)}. Using Lemma 6.0.2 we conclude:

Vudi > nl{A;, = B;]. -
THEOREM 6.0.4 (The structure (R, #) is back-and-forth-homogeneous). Let («g,
Qly..r, Cm—1) and (Bo, B1, ..., Bm—1) be finite sequences of real numbers such that

Vi < m‘t/k < mle; #af;‘ — ﬁ,#ﬁk] Then for every o in R there exists [ in R such
thatVj < mlaH#Ha 2 f;#p].

ProoF. Let (o, 1,...,u—1) and (By, B1, ... , Bn—1) fulfil the requirements of
the theorem.




762 WIM VELDMAN AND FRANK WAALDIIK

Let o be a real number. .

Define, for each n in N, G, = {a;(n) | j < m}U{a(n)}U{B;{n)|j < m}.
Using Lemma 6.2.3 we determine a strictly increasing seqUEnce po, pis . - - of natural
numbers such that foreach # in N, (i) (C,,, #) is cotransitive, and (11) Vj < mvk <
mla;(p) % ax(ps) 2 Bi(pn) # Br(pn)]. We show how to find £ in R such that
Vj < mle#Ha < f,#F). We deternune B(0), B(1),... step-by-step.

Let n be a natural number and assume that £(0), f(1),..., f(n — 1) have been

defined.
We now define f(n) and distinguish three cases:

Case (0): 37 < mlei(py) = a(p,)]. We define: f'(n) := Min{f;(p,) | j <m |
o;(pa) ~ a(p,)} and 7 (n) = Max{p/(p,) | j < n | e;j(ps) = a(pa)}.

Case (1): Vj < mlo;(ps) % a(p,)] and either » = 0, or n > 0 and Jj <
mio;(py—1) = a(p,—1)]. We choose g in Q such that p'(n - ND<g < p’(n-1)
and Vj < m[i(q)#B,] and we define f'(n) = " (n) = q.

Case (2): n > 0andVj < mla;(p._1) % a(py—1)]. We define f'(n) := p"(n) =
B'(n~1).

We have to show that £ is a well-defined real number. Obviously, Yr[f'(n) <
B'(n+1) < p"(n+1) < p"(n)]. Let g,r be rattonal numbers such that ¢ < r.
Determine ¢ in Q such that g < t < r. Determine » in N such that Vj < m[g <
Bi(pa) V B} (pa) < ]and Vj < mlt < Bpn) V B} (pn) <71

ThenVj < mVk < m[{r < B/ (pn) A Br(pn) < 9) — B;i(pn) # Br(pn)]. Observe
that Vj < mVk < m[(a(pn) ~ aj(Pn) A Q(Pn) = ak(pn)) — (a’j(Pn) ~ Qe (pn) A
ﬁj(Pn) ~ ﬂk(Pri))]*

Therefore, if 3j < m{a;(ps) = alp,) Ar < 7 {pa)l, then Vj < mla;(p,) =
a(ps) — g < B}(pa)], that is, if B(n) was defined by Case (0) and r < B"(n),
then g < B'(n), or, equivalently, either f"(n) < r or ¢ < f'(n). Butif f{n) was
defined by Cuse (1) or Case (2}, then '(n) = f"(n), and also: either 8”(n) < r or
g < f'{n).

Therefore, f 1s a well-defined real number.

Now suppose j < m and o;#«. Determine n in N such that o; (p,) # a(p,).

We claim that §;(p,) % B(n).

(For suppose f;(p,) ~ p{n). Then there exists k < m such that f'(n) <
Bi(pn) < B (p) < B'n and B;(ps) = Pe(py) and ay(pn) = a(p,). Therefore:
a;j(pn) = ax(ps) and a;(p,) ~ a(p,). Contradiction.)

Therefore: Vj < mlo;#a — B;#0].

Finally suppose j < m and §;#f. Determine n in N such that (n) % B;(p.).

Looking at the definition of (), we see: a(p,) # o, (pn), therefore: a;#a.
This shows: Vj < m[8;#f — a;#a].

6.1. Observe that every subset 4 of R that gives rise to an elementary sub-
structure of (R, <), also generates an elementary substructure of (R, #), that is, if

(A‘_., <) < (R, <), then (4, #) < (R, #). This follows from the fact that the relation
# 1s definable in the structure (R, <).

lz“or tl‘;is reason, Section 3 furnishes many examples of elementary substructures
of (R, #).

We find more of them if we use Theorems 6.0.4 and 1.6.5.
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6.1.1. Let 4 be a real subset of R. We say that 4 1s #-coherent of R if Vo €
AVn € NIp € A[f#a A B(n) =~ a(n)].

THEOREM 6.1.2, Let A be an inhabited, real, stable and #-coherent subset of R.
Then (A,#) < (R, #).

Proor. Similar to the proof of Theorem 3.3.4. -

6.1.3. It follows from Theorem 6.1.2 that the closed interval [0, 1] gives rise to
an elementary substructure of (IR, #).

It is also true that the half-closed-half-open interval [0, 1) generates an elementary
substructure of (R, #). This is because the structure ([0, 1), #) is isomorphic to the
structure ([0, 0o), #) and the half-line [0, 0o) generates an elementary substructure
of (R, #) by Theorem 6.1.2.

We now prove that the set (—1,0) U [0, 1) generates an elementary substructure
of (R, #).

Let A .= (—1,0)U][0,1). Let (o, @,... , 1) be a finite sequence of elements
of A.

We show:

\C/ﬁ E RHC]J E A[(Rj #: Cl,’(], al: vas oy Qi Oi) EQ (Rl #:CHO:GI: 'y :am—-lzﬁ)]-

Without loss of generality, we may assume;
0 <k<mandVi< kla; € (—1,0) and Vi > kfo; € [0, 1)].

Let f € R. As we observed 1n Section 3.1 we may decide: either f € (—1,0) or
Vi < k[a;#f). If f € (—1,0), we choose @ ;= f. If Vi < k[ey;#/], we determine
in [0, 1) such that (R, c, ..., 00,1, 0) =0 (R, g, ..., Cm—1, 7).

Observe that Vi < k[y#o;], and that we may choose o ;= y.

Using Theorems 6.0.4 and 1.6.5, we conclude that 4 generates an elementary
substructure of (R, #).

§7. Second intuitionistic intermezzo: the converse of Fraissé’s lemma fails.

7.0. We exhibit a pair of similar structures A = (4,...) and B = (B,...)
such that 2 = 2B and derive a contradiction from the assumption that Va € A5b €
B[(%, a) =¢ (18, b)]. Thus we see that the converse of Lemma 1.5, Fraissé’s Lemma,
18 constructively false.

Let % := (/,{0}) and B = (V,{a € #|-(a = 0)}). Observe that both
stuctures satisfy the formula Vx[-—-P(x) — P(x)]. Therefore, in 2 as well as in
B, each subset of 4 that may be defined by a quantifier-free formula, is defined by
one of the following five formulas: P(x), =P(x), P(x) V =P(x), P(x) A =P(x),
P(x) — P(x).

It is now easily seen that 2 satisfies the same sentences (that is, closed formulas)
of quantifier-depth 1 as B, as both structures satisfy each one of the following
ten formulas: Ix[P(x)], =Vx[P(x)], Ix[-P(x)], ~"Vx[~P(x)], Ix[P(x) — P(x)],
Vx[P(x) — P(x)], =3x[P(x) A ~P(x)], “Vx[P(x) A =P(x)], Ix[P(x) V =P (x)]
and —Vx[P(x) vV -P(x)l.

That both U and 8 satisfy the last-mentioned formula follows from the continuity
principle CP, see 5.0.0, as CP implies -Va € Ao = 0V =(a = 0)], compare
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Theorem 5.1. Observe that one does not need the contimuty principle in order to
see that U = Vx[P(x) v =P(x)]iff B |= Vx[P(x) V -P(x)].

71. We introduce a stronger version of the continuity principle CP that we
mentioned in Section 5.0.0. Observe that each function y from N to N, that 1s,
each element y of .4 may be viewed, via an enumeration of the set N* of finite
sequences of natural numbers, as a function from N* to N*. We say that y generatffs
a (continuous) function from ./ to .4, notation Fun(y), iff (1) for all a,f? e N*, if
¢ T b, then y(a) C y(b) and (ii) foreacha in #, m m N there exists » in N such
that length (y(@(n)) > m. In that case we define, for each o m ./, y'a to be the
infinite sequence B of .# such that for each n in N, y(@(»)) is an initial part of .
We are able now to formulate the stronger continuity principle:

7.1.0.

AC,, Foreverysubset C of A/ X A
IfVa € #38 € /[Cla, B)I,
then Iy € #[Fun(y) AVa € #[Cloy, p‘a)]].

(Compare [4, ¥27.1} and C — C in [6].)

7.2, We return to the structures 2, 95, introduced in Section 7.0. We have seen
that 2 satisfies the same first-order-sentences of quantifier-depth 1 as %8, that 1s:
A =1 ‘5.

We claim: Vo € #38 € /(2 ) = (B, f)].

For suppose: Vo € #3f € /[, a) = (B, §)]. Then, in particular, Vo €
HAB € No =0 ~(f =0)]. Applying AC, | wefind y in Nsuch that Fun(y) and
Voo € #oe = 0 2 ~(y‘a = 0)]. Consider y‘0 and assume m in N and (y‘0)(m) #
0. Calculate # in N such that Vo € #a(n) = 0(n) — (y'a)(m) = (y°0)(m)].
Then: Yo € #a(n) = 0(n) — y‘a # 0] and Voo € #[a(n) = On — a = 0].
Contradiction. Therefore: ‘0 = 0. Contradiction.,

8. Some structures elementarily equivalent to the structure (R, ). We will see,
among other things, that (R, +), the additive group of the real numbers, may be

elementarily embedded into (R?, +), the additive group of pairs of real numbers.
We first formulate a useful model-theoretic lemma.

LemMA 8.0 (Vaught’s Lemma). Let 2 = (4, ...) be a mathematical structure and
let 8 = (B,...) be a substructure of . Suppose that for each n in N, for each
formula ¢ = Pp(x0, X1,...,%,—1,¥) in the first-order-language of %, for each finite
sequence (bg, by, ... ,b,_1) of elements of B, for each a in A there exists b in B such
that Y = (;')[bg, bi,...,b,_1, {I] Zﬁ" A qﬁ[bo,blj Cen s bn-—l: b] Then: B < 2.

PrROOF. Like the proof of Lemma 1.5, Fraissé’s Lemma, the proof is straightfor-
ward and constructive. |

8.1. We study the structure (R, +). We will not consider (R, +) itself but prefer
its “relational variant” (R, Add) where Add denotes the set {{, §,7) € R | @+
p#y}. We do so in order to have simple basic formulas. One might also restrict
?;:;ention to so-called unnested formulas in the first-order-language of (R, +), see

For each n in N, and each formula ¢ = ¢(xg, xy,... , Xy—1) In the first-order-
language of (R, Add) we define an equivalence relation ~qs On the set R” by:
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(CE[}; Ly vy leﬂ.__.1> ~o (ﬁ{]; )81: O :ﬁn-—-l) i ((R, Add) — g‘b[ﬂfo: 1y .0 ,len._l] il
(R, Add) =o[fo, 1, ..+ s Bu=1]).

We also introduce, for each n in N, and each finite set A of rational numbers an
equivalence relation ~,4 on the set R by: (ag, @1,... ,an—1) ~4 (o, B1,... , Buzi)
iff for all go,q1,...,qn—1 0 4+ ) ., q; - o#0UE 3. q; - B;#0. We claim
that for each formula ¢ = ¢(xg,x1,...,x,-1) from the first-order-language of
(IR, Add) there exists a finite set 4 of rational numbers such that ~,C~y;, that is,
such that for all finite sequences (ag, ct, ... ,a,—1) and (Bo, Bi,.. ., fu_1) of ele-
ments of R: If (@, v1, . .., 1) ~a (Bo, frse o s Bumt), then (ap, vy, e g) ~y
(ﬁU: ﬁlr e :ﬁn-—-l)*

We prove this claim by induction on QD({¢).

If ¢ is a quantifier-free formula, that is, if OD(¢) = 0, we may take 4 =
{0,1,-1,2,-2}.

Now suppose that ¢ i1s an existential formula, say

EJP[I/J(X'O, Alyere 3 XAn—1, J/’)];

or a universal formula, say

v)’[W(.X'(), ALy oo :xn--l:.ly)]:

and that A4 1s a finite set of rational numbers such that ~ 4C~,,, We assume that 0
and 1 belong to 4 and that for each g in @, if ¢ belongs to 4, then also —¢ belongs
to A. We now define B 1= {£ - L | g,r,5,t € 4,5 # 0,¢t # 0} and we show
that ~pCery. Let (o, e, ... ,c,-1) and (B, f1,- .. , fu—1) be finite sequences of
elements of' R such that (e, 1, ... s @u—1) ~5 (o, f15... , Bu—1). Observe that for
all go, g1y« s Gn_1,70,F1,+++ »Fu~1,5,¢ in A such that s # 0 dl‘.ld ¢t # 0 the following
hOldS: Z;«:n fi: CH #Z;{n _:'L CE lﬁz}{ri ﬁ:; ﬁI#Z){ﬂ ]

We now use the fact that the structure (R, #) is bdck-and forth-—homogeneous,
see Theorem 6.0.3. We may construct, for every o in R an element  of R such that
for all g0, q1,... ,qu-1,5 101 A such that s # 0 the following holds:

N4 a#mfrzq’ B,

, A
J<n j<n

that is: (e, aq,... ,0h—1, &) ~4 (Bo,B1,..., ) and therefore: (R, Add) = wlay,
CKtyoon syl Crf] lf and 01‘11}7 if (R, Add) = (//[[)'g, ﬁ[, Cee s ﬁn-—-l: ﬂ]
Applying LLemma 1.2 we conclude:

If (R, Add) k= 3x[plle, au, ... , 1], then (R, Add)
and.:
If (R: Add) I: \V’x[‘//][ﬁ(}; ﬁl: v ey ﬁn-——l]: then (R: Add) — \V’x[*ﬁ’][ﬁfoa 2 PRI an—l]‘

One proves i the same way:

Li}

x[wllfo, Brs. .. 5 Pu-il

1

It (R.& Add) l:: E.J’C[lf/][ﬁ{), ﬁl JCNUIIN ﬁﬁ*-l]: then (R: Add) l= E-x[l/f][&[]: Gy vy &H-——I]
and.:

If (R:Add) — VX[I,U][CH(}, CH}, ey an-—]]; th-en- (R: Add) Bl vx[{f;] ﬁ[}: ﬁl: ﬁ?! 1]
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8.2. We mention some structures that are elementarily equivalent to (R, Add).

82.1. Consider D 1= {a € R | =3¢ € Qe = i(g)]}, that is, the set of not-
not-rational numbers. We claim that (D, Add) < (R, Add). We prove this claim
by applying Lemma 8.0. Let ¢ = ¢(xp, x1,... ,Xn—1,)) be a formula in the first-
order-language of (R, Add). Using the results of Section 8.2, determine a finite set
A of rational numbers containing 0,1, such that ~4Cr~y. Now, let o, f1, ..+ 5 Br—1
be a finite sequence of elements of D, and let & € R. From the proof of Theorem
3.3.4 we see that it is possible to find 8 in D such that for all go, g1, ... , gn—1, 5 In 4,
if s # 0then: ), % p#aifandonlyif )., L B;#f, and therefore, (Bo, b1, - - .
ﬂu-——-l:a) ~4 (ﬁ{h ﬁl: v ﬁn—l:ﬁ): and theretore: (R: Add) — Qﬁ'[ﬁ(}, ﬁl: o :ﬁn-—-l:
o) if and only if (R, Add) &= ¢(fo, B1, - - » Bu—1, B]. This concludes the proof of our
claim. Observe that also (D, Add, <) < (R, Add, <).
~8.2.2. Generalizing the example given in Section 8.2.1 we may take any subset
A of R that gives rise to a divisible subgroup of (R, Add) and contains an element
apart from 0. As such a set 4 is dense in R we may conclude, as in Section 8.2.1, that
{a € R | =—3f € A[B = ]} gives rise to an elementary substructure of (R, Add).

8.2.3. Mutatis mutandis, what we said on the structure (R, +) may be said on
the structure (R?, +). Consider A = {(@, @) | @ € R} and observe that 4 is a stable
subset of R? as Yo € RV € R[-—{a = ) — o = B]. Moreover, A is a #-coherent
subset of R?, (see Definition 6.3.1) if we adapt this notion to the structure (R?, #).
Therefore, {4, +) is an elementary substructure of (R?, +) and o — (o, @) is an
elementary embedding of the structure (R, +) into the structure (R?, +).

8.2.4. Consider the structure (QY, 4+) whete addition of infinite sequences of
rational numbers is defined component-wise. (QN, +) is elementarily equivalent to
(R, +). One may prove this by building the product structure (QN x R, +) and then
observing that both Q¥ x {0} and {0} x R (where 0 denotes the neutral element
of (QN, +)) are stable and #-coherent subsets of QN x R and thus give rise to
elementary substructures of (Q™ x R, +). As in 8.2.3 we leave the details of the
proof to the reader.

8.3. We make a minor final remark. One might be tempted to consider,
for each n m N, the equivalence relation ~g on the set R”, that is given by:

(o, gy eev ,0tp—) ~4 (Bos Bis .- » Bu—y) iff for all rational numbers qq, 41, ... ,
Gn—1* D icn9j - @#0 iff 3 j<n 4j * B;#0. It follows from our remarks in Sec-
tion 8.2 that (intuitionistically no less than classically) (g, ey, ..., cp_;) ~5
(Bos By ..., Bu—) iff for each formula ¢ = ¢(xg, x1,...,x,—;) in the first-order-
lang;age]af (R,Add) : (R,Add) | ¢lag, ai,... ,0,1] iff (R,Add) = ¢[fo, A1,
vy Mi—11-

We show that, constructively, the sequence of equivalence-relations ~
, ... does not enjoy the back-and-forth-property.

We construct a Brouwerian counter-example. (In fact, this is our intuitionistic
postiudium.) Letd : N — {0,1,...,9} be the function such that 7 = 3 +
Y o od{n) - 107""1 that is, d is the decimal expansion of m. We construct real
numbers o and § as follows. For each # in N, if =3m < nVi < 9[d(m + i) = 9],
a(n) = Bn) = (—2,1), and if Im < nVi < 99[d (m + 1) =9]and k = um <
nVi < 99[d(m + i) = 9], then, if & is odd a(n) = (£ +) and B(n) := (575 37) and

. ’ . I
if & 1s even a(n) == (5, 5;) and B(n) = (£, 7). Observe that for each rational

0 1 .2
Q@ Q Q
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number ¢ : g - a#0 if and only if ¢ - f#0, that is: () ~ (). Now assume: y € R
and (q, 1) ~2 o (B, v). Observe that if 3mVi < 99[d (m + i) = 9] and the least such

m 18 odd, then a=2-fandy = 2, but, if AmVi < 99[d (m + i) = 9] and the least
such m 1s even, then ,6’ = 2.« and y = 2, This shows that we are unable to find y
in R such that (e, 1) ~§ (8, 7).
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